Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode
نویسندگان
چکیده
We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired.
منابع مشابه
Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol
Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO2-reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate-silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to a...
متن کاملModified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination
Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...
متن کاملApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کاملHighly improved methanol oxidation onto carbon paste electrode modified by nickel particles dispersed into poly (2,5-dimethylaniline) film
In this work, modification of carbon paste electrode surface with poly (2, 5-Dimethyl aniline) (P-2,5-DMA) by using electrochemical polymerization was described. Then, transition metal ions of Ni(II) were incorporated into the polymer film by two ways. At first way, the polymeric modified electrode was immersed in 0.2 M NiSO4 solutions and the second way was carried out by electrodeposition of ...
متن کاملPlatinum Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell
Surface oxidized carbon vulcane XC-72 is prepared as catalyst support and platinumnanoparticles are chemically anchored onto the modified surface. The nanoparticles of Pt weresynthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 M buffer solution ofsodium citrate; the complexation of citrate with metal ions is beneficial to the formation ofnanoparticles. The electro-oxidation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016